Neurotoxicity of anhydroecgonine methyl ester, a crack cocaine pyrolysis product.
نویسندگان
چکیده
Smoking crack cocaine involves the inhalation of cocaine and its pyrolysis product, anhydroecgonine methyl ester (AEME). Although there is evidence that cocaine is neurotoxic, the neurotoxicity of AEME has never been evaluated. AEME seems to have cholinergic agonist properties in the cardiovascular system; however, there are no reports on its effects in the central nervous system. The aim of this study was to investigate the neurotoxicity of AEME and its possible cholinergic effects in rat primary hippocampal cell cultures that were exposed to different concentrations of AEME, cocaine, and a cocaine-AEME combination. We also evaluated the involvement of muscarinic cholinergic receptors in the neuronal death induced by these treatments using concomitant incubation of the cells with atropine. Neuronal injury was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. The results of the viability assays showed that AEME is a neurotoxic agent that has greater neurotoxic potential than cocaine after 24 and 48 h of exposure. We also showed that incubation for 48 h with a combination of both compounds in equipotent concentrations had an additive neurotoxic effect. Although both substances decreased cell viability in the MTT assay, only cocaine increased LDH release. Caspase-3 activity was increased after 3 and 6 h of incubation with 1mM cocaine and after 6 h of 0.1 and 1.0mM AEME exposure. Atropine prevented the AEME-induced neurotoxicity, which suggests that muscarinic cholinergic receptors are involved in AEME's effects. In addition, binding experiments confirmed that AEME has an affinity for muscarinic cholinergic receptors. Nevertheless, atropine was not able to prevent the neurotoxicity produced by cocaine and the cocaine-AEME combination, suggesting that these treatments activated other neuronal death pathways. Our results suggest a higher risk for neurotoxicity after smoking crack cocaine than after cocaine use alone.
منابع مشابه
M1 and M3 muscarinic receptors may play a role in the neurotoxicity of anhydroecgonine methyl ester, a cocaine pyrolysis product
The smoke of crack cocaine contains cocaine and its pyrolysis product, anhydroecgonine methyl ester (AEME). AEME possesses greater neurotoxic potential than cocaine and an additive effect when they are combined. Since atropine prevented AEME-induced neurotoxicity, it has been suggested that its toxic effects may involve the muscarinic cholinergic receptors (mAChRs). Our aim is to understand the...
متن کاملCocaine disposition in meconium from newborns of cocaine-abusing mothers and urine of adult drug users.
The analysis of meconium for cocaine and metabolites has proved to be a reliable method for the detection of fetal cocaine exposure. Better sensitivity and a larger gestational window of detection have been demonstrated for meconium testing as compared with neonatal urine testing. Cocaine and cocaine metabolites, including benzoylecgonine, ecgonine methyl ester, cocaethylene, norcocaine, benzoy...
متن کاملEffects of cocaine and its major metabolites on the HERG-encoded potassium channel.
Cocaine abuse has been reported to result in QT prolongation in humans; however, the mechanisms underlying this effect are still poorly understood. In this study we compared the direct effects of cocaine and its major metabolites in human embryonic kidney 293 cells stably transfected with human ether-a-go-go-related gene (HERG). Cocaine blocked HERG-encoded potassium channels with an IC50 of 4....
متن کاملCocaine blockade of the acetylcholine-activated muscarinic K+ channel in ferret cardiac myocytes.
The effects of cocaine on the acetylcholine(ACh)-activated muscarinic K+ current (IK(ACh)) were assessed with the whole-cell patch-clamp technique in single atrial and left ventricular myocytes enzymatically isolated from adult ferret hearts. The density of IK(ACh) is almost 5 times greater in atrial cells than in left ventricular myocytes. Cocaine reversibly blocked IK(ACh) in a dose-dependent...
متن کاملPharmacokinetics and pharmacodynamics of methylecgonidine, a crack cocaine pyrolyzate.
Methylecgonidine is formed from cocaine base when smoked and has been identified in biological fluids of crack smokers. Ecgonidine, a metabolite of methylecgonidine formed via esterase activity, also has been identified in similar samples collected from crack smokers. Methylecgonidine and ecgonidine can be used as biomarkers to differentiate smoking from cocaine use via other routes of administ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxicological sciences : an official journal of the Society of Toxicology
دوره 128 1 شماره
صفحات -
تاریخ انتشار 2012